

Perspectives pour l'évaluation environnementale des technologies dans le contexte de la planification

Sommaire

- 1. Obligations réglementaires d'évaluation environnementale des documents de planification
- 2. La démarche de l'évaluation environnementale
- 3. Un outil de quantification : la méthode du BRGM en Ile de France
- 4. Les apports de CLEANWAST

Obligations réglementaires d'évaluation environnementale des documents de planification

 Directive 2001/42/CE du Parlement européen et du Conseil du 27 juin 2001 relative à l'évaluation des incidences de certains plans et programmes sur l'environnement

Transcrite en droit français par:

- décrets n°2005-608 et 2005-613 du 27 mai 2005,
- circulaires des 12 avril et 25 juillet 2006
- Décret 2012-616 du 2 mai 2012
- ⇒ l'évaluation environnementale est une démarche obligatoire pour les plans de prévention et de gestion des déchets non dangereux.

La démarche de l'évaluation environnementale

<u>L'évaluation environnementale</u>:

- Doit identifier, décrire et évaluer les effets de la mise en œuvre d'un plan sur l'environnement
- Outil d'aide à la décision

Le guide méthodologique de l'ADEME pour la réalisation des évaluations environnementales des plans « déchets » :

- Appui méthodologique de la démarche et non une trame obligatoire
- Pas de données de référence fournies (qqes ratios collecte)
 - ⇒ Libre choix de la méthodologie à employer

PRogramme de recherche

La démarche de l'évaluation environnementale

Exemple de 2 approches pour la réalisation des évaluations environnementales des plans « déchets » :

- approche qualitative (majorité des PPGDND)
 - •Propositions « à dire d'experts » au regard des autres documents de planification et de protection
 - •Quelques quantifications de consommation et d'évitement (énergie et CO2)
- approche semi-quantitative (ex: méthodologie du BRGM sur le PREDMA IDF)
 - •Utilisation de données d'exploitation pour les données disponibles
 - •Utilisation de ratios issus de base de données ACV pour les non disponibles
 - •Propositions « à dire d'experts » pour les données non quantifiables

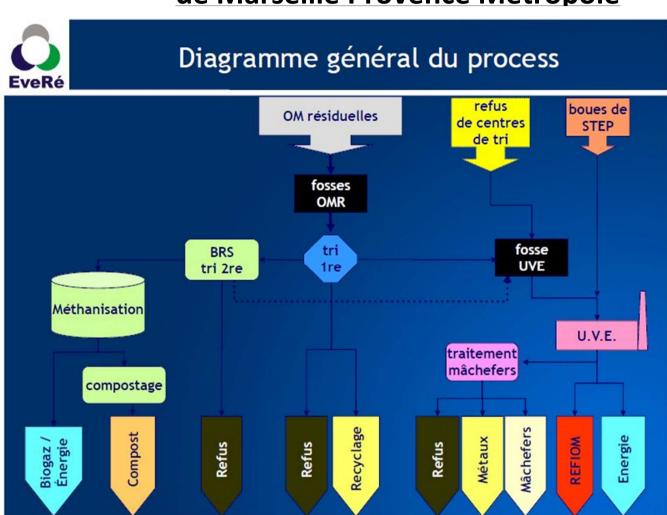
<u>Un outil de quantification :</u> <u>la méthode développée par le BRGM en Ile de France</u>

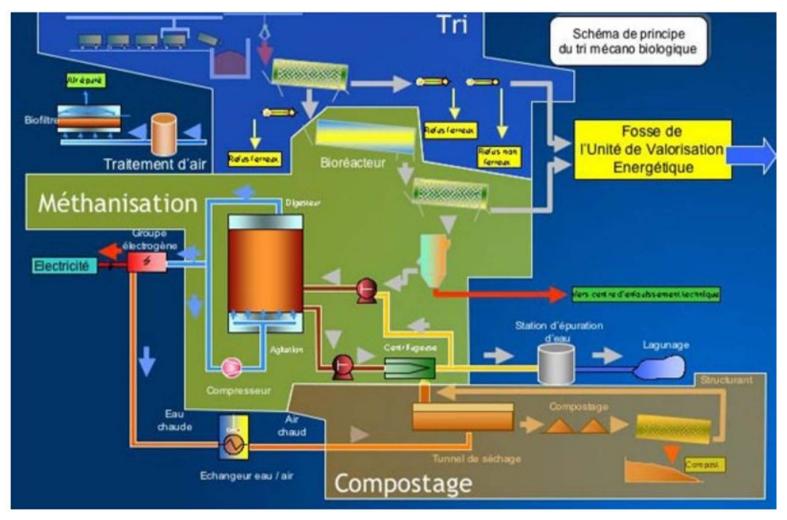
La méthode :

- Basée sur approche ACV
- Toutes les segments de la gestion des déchets (collecte → Elimination)
- Pressions directes (inventaires des émissions et consommation de ressources)
- Pression évitées par le recyclage et la production d'énergie

Les données utilisées (émissions et facteurs d'émissions) :

- Données réelles (arrêtés d'exploitation, rapports d'activités...)
- Données complémentaires européennes (Ecoinvent...)





Les données disponibles dans les Bouches du Rhône pour le TMB :

Type de pression		Pressions quantifiés	Disponibilité des données de terrain	Autres sources de données
Ressources naturelles	Energie	Carburant	Oui	Déclaration exploitant
		Electricité produite exprimée en MWh	Oui	Déclaration exploitant
		Electricité consommée par l'usine exprimée en MWh	Oui	Déclaration exploitant
		Electricité : Bilan exprimé en MWh	Oui	
	Ressources locales	Eau	Oui	DDAE DREAL
		Surfaces "occupées"	Oui	

Les données plus difficilement disponibles ou exploitables :

Type de pression		Pressions quantifiés		
Pollutions et qualité des milieux	Air	CO ₂	COV nm	
		CH₄	Cd	
		N ₂ O	Cu	
		Particules	Cr	
		СО	Ni	
		SO ₂	Se	
		NO _x	Zn	
	Eau	DCO	Phosphore total	
		DBO ₅	Cl	
		MES	N (Azote total)	
		Hydrocarbures totaux	NO ₂ -	
		SO ₄ ²⁻	NO ₃ ²⁻	
		Phénols	СОТ	
Nuisances	Sonores	Bruit	Non	
ivuisances	Olfactives	Odeur	Non	

⇒ Utilisation de ratios pour ces pressions

Les limites des ratios de la méthode du BRGM pour le TMB

exemple du CH4:

- Source des ratios = Modèles Ecoinvent et RCD Environnement « ACV biogaz »:
 - perte de biogaz de l'unité de méthanisation ≈ 0 (après biofiltre)
 - Emission de CH4 lors du compostage de digestat = 0
 - •Les pertes sont considérées pour la combustion du biogaz (torchère et chaudière)
 - ⇒ quid des émissions diffuses ?

Les premiers apports de CLEANWAST

Emissions de CH4 d'une installation TMB:

- Des émissions très variables selon les process et les usages
- Une représentativité limitée pour aboutir à une modélisation (variabilité et incertitudes)
- Un enjeux fort à l'échelle de l'installation mais moindre à l'échelle de la gestion globale des déchets d'un territoire
- ⇒ Nécessite des expérimentations de terrains complémentaires
- ⇒ Intérêt d'une telle précision à l'échelle de la planification?

Les premiers apports de CLEANWAST

Le retour au sol:

- Des émissions dépendantes des process de traitement des déchets et des caractéristiques pédologiques et climatiques
- Des bénéfices probables sur les caractéristiques des sols
- Des conséquences environnementales encore mal connues et difficilement modélisables
- Un enjeux fort à l'échelle de la gestion globale des déchets d'un territoire et des objectifs du Grenelle
- ⇒ Nécessite de poursuivre les recherches sur la prise en compte du retour au sol de la MO dans les évaluations environnementales

Perspectives d'évolution

Des nouvelles réglementations; des nouvelles filières :

- Déchets des activités économiques ; quelles évaluations pour ces filières
- Prévention de la production de déchets; quels impacts sur les filières existantes?
- Gros producteurs de déchets organiques;
 - Quels impacts sur les filières existantes (taux de MO / valorisation)
 - Création de nouvelles filières (méthaniseurs et composteurs sur site)
 - Quels impacts environnementaux de ces filières

